
Introduction to the Chaos library
Calling Sequence:
     readlib(chaos)
     function ( args )

Description:
To use a chaos function, you must first execute the readlib(chaos) command. Most of the 
terminology used can be found in Devaney's undergraduate text,  Chaotic Dynamical Systems (ISBN: 
0-201-55406-2), Frame and Peak's Chaos Under Control (ISBN:0-7167-2429-4), or Barnsley's
Fractals Everywhere (ISBN: 0-12-079062-9).

The functions available are:

Basic Dynamics
Orbit(f:function,x:initial value,n:positive integer)

- produces the first n exact values for the f-orbit of x. Returns a list.
Orbitf(f:function,x:initial value,n:number of iterations)

- computes the first n values of the orbit of x under f  using floating 
point approximations. Returns a list.

GraphicalAnalysis(f:function,a:lower bound,b:upper bound, x0:seed,n:iterations) 

- displays a graphical analysis of n iterations of the orbit of x0 under

f over the interval a, b
AnimatedGraphicalAnalysis(same arguments as GraphicalAnalysis) 

- performs a graphical analysis one step at a time and then animates the 
sequence.  (The animation window operates like a VCR)

FixedPointAnalysis(F:polynomial function) 
- tries to find and classifies all fixed points and 2 cycles for real 
valued polynomial function F

Bifurcation
Bifurcation(f:function,c0:lower limit,c1:upper limit,hpoints:horizontal points,

n:number of points,x0:real number)

- plots the bifurcation diagram of f x, c  for c in c0, c1  with increment

c1 c0

hpoints
.  It plots n points after throwing away the first 50 points. It

uses an initial value of x0 for the individual orbits.

Bif3d(x0,y0,x1,y1,xgrid,ygrid,toss,keep)

 - Computes an extension of the bifurcation diagram in R3 above the 
Mandelbrot set to the rectangular grid in the complex plane whose corners
are  x0, y0  and x1, y1  over a grid which is xgrid rows and ygrid 
columns. It throws away the first toss elements of each orbit and plots 
the next keep values using the absolute value of the complex values as 
the third coordinate.



Data Analysis
TimeSeriesPlot(f,t,n)

- plots the time series plot of the first n iterates of the f-orbit of t,
i.e. plots the points [0,t],[1,f(t)],...,[n, f n(t)].

ShowMixing(f,t,n)
-visually tests the mixing property of first n iterates the f-orbit of t 
by plotting the points [0.5,t],[0.5,f(t)],...,[0.5, f n(t)]

FirstDelayPlot(List)
-plots the first delay plot of a list of data values, List, i.e. plots [
x0,x1],[x1,x2],...,[xn 1,xn].

ClosePairsPlot(DATA,tolerance)
- plots the close-pairs plot of DATA (a list of real values) with 
tolerance tolerance.

ChaosGameTest(DATA)  
- plays the 4 corner chaos game driven by DATA, which is a list of real 
values between 0 and 1.

CircleChaosGameTest(DATA)  
- plays a variant of the chaos game driven by DATA, which is a list of 
real values between 0 and 1. Instead of using a fixed number of goal 
points and clustering the data into groups, the points on the unit circle
are all goal points and are labeled from 0 to 1 CCW direction and each 
value is plotted by moving half way from the previous point to the point 
on the unit circle that is labeled by the current data value.

BarnsInt(DATA,d)
- returns an IFS object (see below) whose attractor is the Barnsley 
Fractal Interpolation IFS for the data points in DATA, which is a list of
n ordered pairs [[x1,y1],...,[xn,yn]].  d is a list of n-1 parameters 
that influence the fractal dimension of the graph.

Particular Maps
Dbl(x:real) 

- The doubling function

LogisticChart( :real,n:pos. integer) 
- makes a nice table of the first n iterates of various orbits for 
logistic function f x =  x 1 x

LogisticGrowthPlot(c,x0,n,L)
-Plots the time series plot for the first n iterates of the f-orbit of 
x0 logistic map f x = c x 1 x  with nice formatting. If L='lines' then 
it connects the data points, otherwise it doesn't.

BoxLogisticGrowthPlot(c)
-Plots the time series plots for the first 50 iterates of the f-orbits of
0.1,0.2,...,0.8, and 0.9 under the logistic map f x = c x 1 x  all on 
the same graph to see if they all have the same long term behavior or 
not.

ChaosGame(PtList:List of Points,Start:starting point,NumPts:number of points,
Ratio:ratio to move)

- plays the chaos game starting with point Start and continuing by moving
Ratio percent of the distance toward a randomly chosen point from PtList.
 It does this NumPts times. Points are input as lists, [x,y].



IFS's and AFFINE maps
In the following routines, we define two data types: AFFINE and IFS. 
   An IFS is a single AFFINE or a list of one or more AFFINE's. 
   An AFFINE represents an affine map of the plane and comes in four flavors:
 
     affine(a,b,c,d,e,f)        - standard form
     Affine(R,S,theta,phi,E,F)  - geometric form
     affineC( , , )              - complex form
     affineM(M,B)               - matrix form

These are inert forms representing the following maps:

     affine(a,b,c,d,e,f) <-> T(x,y)=(ax+by+e,cx+dy+f)

     Affine(R,S,theta,phi,E,F) <-> T(x,y)=(R cos
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     affineC( , , ) <-> T(z)=  z  z   where , , , z are complex numbers
     affineM(M,b) <-> T v = Mv b where M is a 2x2 matrix and b,v are column 
vectors

IFS routines

`convert\affine`(A::AFFINE)  - converts an AFFINE or IFS object to its affine() 
form
`convert\Affine`(A::AFFINE)  - converts an AFFINE or IFS object to its Affine() 
form
`convert\affineC`(A::AFFINE) - converts an AFFINE or IFS object to its affineC() 
form
`convert\affineM`(A::AFFINE) - converts an AFFINE or IFS object to its affineM() 
form

affineFromPoints( p1, p2, p3,Tp1,Tp2,Tp3)
- Computes the AFFINE object affine(a,b,c,d,e,f) for the unique affine 
map T(x,y)=(ax+by+e,cx+dy+f) which maps points p1 to Tp1, p2 to Tp2, and

p3 to Tp3.

IFSFromList(List)
-creates an IFS data structure from a list of m lists of the form [R, S, 
, , E, F]

Map(IFS)
- converts the AFFINE or IFS object to the map T(x,y)=(ax+by+e,cx+dy+f)

Transform(IFS)
- converts the AFFINE or IFS object to a transform which can be applied 
to plot objects 

DrawDetIFS(figure,IFS,n)
- plots the nth iteration of the deterministic method for IFS starting 
with figure

DrawIFS(IFS,n)
- plots the attractor of IFS by the random iteration method using n 
points. (Note: don't use a value of n that is larger than about 30000)

RestrictedIFS(IFS,n,S)
- plots the attractor of IFS by the random iteration method using n 
points, but does not plot any point whose address contains any of the 



finite address lists given in the set S.

IFScurve(t,IFS)
- computes the point in the attractor of an m transformation IFS whose 
address begins with the digits in the base m expansion of t

DrawIFScurve(IFS,n)
- plots the attractor defined by IFS using n evenly spaced points in [0.
.1] for addresses

ContractionFactor(A)
-returns the contraction factors for the AFFINE map A (or a list of 
contraction factors if A is an IFS)

Built-in IFS's
The following IFS data types are built-in:

      SierpinskiCarpet      SierpinskiTriangle      SierpinskiTriangle2
      KochCurve             CantorSet

In addition IFS's can be quickly produced with the following routine:

GridIFS()
- this routine takes n2 arguments, each of which is from the set 

Lt, Rt, Up, Dn, Lt, Rt, Up, Dn, None . It returns the following IFS: 
Divide the unit square [0..1]x[0..1] into an nxn grid. Number the grid 
squared from 1 to n2 starting in the lower left corner and moving from 
left to right and then bottom to top. The ith argument describes an 
affine transformation which maps the unit square into the ith grid cell 
in a manner analogous to one of the symmetry operations in the dihedral 
group of the square (e.g. Lt means it is rotated 90 degrees CCW, Rt means
90deg CW, -Up is a reflection along a vertical axis, -Lt is reflection 
along the vertical axis followed by 90deg CCW rotation, etc). If the 
argument is none, there is no affine map associated with that grid cell. 
For example, the right Sierpinski Triangle can be produced with GridIFS
(Up,Up,Up,none)

HeeBGB()
- an alias for GridIFS() used in my classes to denote a method for 
coloring Grid-Based (hence the GB) IFS fractals by hand. Syntax is 
exactly the same as GridIFS().

GB(n,x1,...,xk)
- this routine is a shorthand for inputting GridIFS() fractals that only 
involve the Up and None arguments. The argument n is the same as n in the
description of GridIFS() and x1,...,xk are positive integers less than or

equal to n2 which indicate the locations of the None's on the grid 
described in GridIFS().

Built-in starting figures
The following plot structures are built-in, and can be used as the starting 
figure for plotting the iterations of the deterministic method for an IFS (see 
DrawDetIFS()).

      MrFace       MrGrid       MrPoint      MrLine   
      MrSquare     MrTriangle   MrsTriangle



Directed Segment Replacement Fractals (aka stick figures)
In the following routines, we define a data type: STICK
A STICK is an inert Maple object of one of the following two forms:
 
     seg([a,b],[c,d])    - represents a line segment with end points [a,b] and 
[c,d]
     dseg([a,b],[c,d])   - represents a directed line segment from [a,b] to [c,d]

A set of STICKS is called a STICK FIGURE. 

Directed Segment Replacement routines

DrawSticks(s)
- Plots the STICK FIGURE s. If the optional argument 'showdsegs' is given
after s, the directed segments are drawn with an arrow at their midpoint 
indicating their direction.

DrawSF(seed,Replace,n)
- Let x0,...,xn be a sequence of STICK FIGURES defined as follows. 

x0=seed. For 0<i n define xi to be the stick figure obtained by 

replacing each of the dseg()'s in xi with the appropriately transformed 
STICK FIGURE Replace. In particular, if dseg([a,b],[c,d]) is any directed
segment in xi 1 and [x,y] is any endpoint of any STICK in Replace, then 

xi will contain a corresponding STICK (of the same type as the one in
Replace) having an end point at 

c a  x b d  y a, d b  x c a  y b . The original directed 
segment is replaced while non-directed seg()'s in xi 1 are not 

transformed and are simply passed along to xi. The DrawSF() command plots

xn. If the optional argument 'showdsegs' is given after n, the directed 
segments are drawn with an arrow at their midpoint indicating their 
direction. (This is actually a lot simpler than it sounds!)

Built-in starting stick figures
The following plot structures are built-in, and can be used as the starting 
figure (seed) for DrawSF().

      MrDseg      MrDtriangle

Mandelbrot and Julia type fractals
JuliaFractal(Fx,Fy,a..b,c..d,options)

 - computes a Julia-set type fractal for a function F:C->C where C is the complex plane. The 
arguments are as follows:

Fx - the real part of F
Fy - the real part of F
a..b - an optional range indicating the horizontal range to be displayed 
       (the default is -2..2)
c..d - an optional range indicating the vertical range to be displayed
       (the default is -2..2)

Options:
The remaining options given as equations of the form option = value. The 



following options are supported:

maxiter  - a positive integer indicating the maximum number of iterations to compute for 
each point before declaring that point to be in the filled in Julia set associated with F (default 
is 500) 

radius   - a positive real indicating the escape radius (default is 2)

grid     - a list, [n,m], of integers indicating the number of grid points horizontally and 
vertically to use (default is [100,100])

scheme   - an integer from 1..6 indicating which color scheme to use (default is 1)

rate     - a number from 1 to maxiter indicating the rate at which colors should change. Low 
numbers will produce a striped coloration while higher values produce a gradual transition 
(default is 25)

timer    - a boolean indicating whether the routine should report how long it took to compute
the fractal (default is false)

Any additional arguments are passed along to plots[display] before rendering.

MandelFractal(Fx,Fy,a..b,c..d,options)
 - computes a Mandelbrot set type fractal for a family of functions F:C->C where C is the 
complex plane. The arguments are as follows:

Fx   - the real part of F (must be a proc(x,y,c0,c1) returning a real number) 
       (default value is (x,y,c0,c1)->x*x-y*y+c0)
Fy   - the real part of F (must be a proc(x,y,c0,c1) returning a real number)
       (default value is (x,y,c0,c1)->2*x*y+c1)
a..b - an optional range indicating the horizontal range to be displayed 
       (the default is -2..2)
c..d - an optional range indicating the vertical range to be displayed
       (the default is -2..2)

Options:
The remaining options given as equations of the form option = value. The 
following options are supported:

maxiter  - a positive integer indicating the maximum number of iterations to compute for 
each point before declaring that point to be in the Mandelbrot set associated with F
(default is 500) 

radius   - a positive real indicating the escape radius (default is 2)

grid     - a list, [n,m], of integers indicating the number of grid points horizontally and 
vertically to use (default is [100,100])

scheme   - an integer from 1..6 indicating which color scheme to use (default is 1)



rate     - a number from 1 to maxiter indicating the rate at which colors should change. Low 
numbers will produce a striped coloration while higher values produce a gradual transition 
(default is 25)

timer    - a boolean indicating whether the routine should report how long it took to compute
the fractal (default is false)

Any additional arguments are passed along to plots[display] before rendering.

MakePalette(n,rate,scheme)
- creates a color palette with n colors and period rate. There are six schemes available 
numbered 1..6. 

ViewPalette(palette)
 - displays the color palettes that are output by MakePalette()

ComplexToRealFunc(F)
 - returns the real and imaginary parts of a complex function F:C->C

MandComplexToRealFunc(F)
 - returns the real and imaginary parts of a complex family of functions F:C->C parameterized 
by c0+c1*I

QuadraticFunc(c)
 - returns the map z->z^2+c where c is a complex number

JuliaSet(c)
 - shorthand for JuliaFractal(ComplexToRealFunc(QuadraticFunc(c))). Additional args are 
passed along to JuliaFractal().

MandelbrotSet()
 - shorthand for MandelbrotFractal(). Additional args are passed along to MandelbrotFractal
().

FRACTRAN

Fractran(List)
-returns the Fractran function defined by the list of rational numbers,
List

IsTwoPower(n)
-returns true if n is an integer power of 2, and false otherwise

TwoExponent(2^n)
-returns n

Post's Tag Problem



TAG(string)
-Post's TAG function for strings of a's and b's
 

Other Useful Utilities
Table()              

- Takes lists as args and prints them in a table.

BaseN(t,n)
-Converts a real number t in [0..1] to base n... returns a list of
Digits digits.

FatPoint(x:real,y:real,n:pos. integer,siz:pos. real,col:color constant) 
- plots a big fat point at (x,y) as a regular polygon with n sides and 
radius siz with color col. Used to make special points more visible in a 
plot.

Examples
restart
with chaos
f x ! x2 2; Q x, c ! x2 c; L x, c ! c x 1 x

Orbit f,
1
2

, 10

Orb Orbitf f,
1
2

, 6

Table Orb, numbered
Orb Orbit x ! Q x, 0.78 0.04 I , 0, 10 :
Table Orb, opts digits = 4 , map abs, Orb
GraphicalAnalysis f, 2, 2, 0.65, 250
AnimatedGraphicalAnalysis f, 2, 2, 0.65, 50
FixedPointAnalysis x ! x2 1
Bifurcation Q, 2, 0.25, 500, 100, 0
Bif3d 2, 2, 2, 2, 40, 40, 150, 10
TimeSeriesPlot x ! x2 0.75, 0, 100
ShowMixing x ! 3.95 x 1 x , 0.5, 200

n 1000 : Random rand 1 ..1011 : List1 seq evalf
Random

1011 , i = 1 ..n :

List2 Orbit x ! 3.99 x 1 x , 0.328763415, n 1 :
# output omitted: Table(List1,List2,numbered):
FirstDelayPlot List1
FirstDelayPlot List2
ClosePairsPlot List1 1 ..100 , 0.05
ClosePairsPlot List2 1 ..100 , 0.05
ChaosGameTest List1
ChaosGameTest List2
CircleChaosGameTest List1
CircleChaosGameTest List2



mb BarnsInt 1, 2 , 2, 3 , 3, 1 , 4, 2 , 0.4, 0.4, 0.4

IFSCurve 0, mb ; IFSCurve
1
3

, mb ; IFSCurve
2
3

, mb ; IFSCurve 1, mb

IFSCurve 0.5, mb
DrawIFSCurve mb, 400
plot Dbl x , x = 0 ..1, discont = true
LogisticChart 3.2, 25 :
LogisticGrowthPlot 3.5, 0.3, 100, lines
BoxLogisticGrowthPlot 3.5
ChaosGame 0, 0 , 0, 1 , 1, 0 , 0, 0 , 10000, 0.5
ChaosGame 0, 0 , 1, 1 , 1, 0 , 0, 1 , 0.3, 0.3 , 10000, 0.55

T affineFromPoints 0, 0 , 1, 0 , 0, 1 , 0, 1 , 0,
1
2

,
1
2

,
1
2

convert T, Affine
convert T, affineC
convert T, affineM
Map T
Mapf T
P plot sin x , x = 6 ..6 : P
display Transform T P
ContractionFactor T
MyIFS GridIFS Up, none, none, Lt, none, Up, Lt, none, none, Rt, Dn, none, Rt, none,

none, Dn
Map MyIFS
Map MyIFS 1
Map MyIFS 1 2, 3
convert MyIFS, affine
convert MyIFS, affineC
convert MyIFS, affineM
ContractionFactor MyIFS
DrawDetIFS MrFace, MyIFS, 1
DrawDetIFS MrFace, MyIFS, 2
DrawIFS MyIFS, 20000
DrawIFS GridIFS Up, Lt, Dn, n , 30000
DrawIFS HeeBGB Up, Lt, Dn, n , 30000
DrawIFS GridIFS Up, n, Up, n, Up, n, Up, n, Up , 30000
DrawIFS GB 3, 2, 4, 6, 8 , 30000
RestrictedIFS GridIFS Up, Up, Up, Up , 30000, 0, 0 , 1, 1 , 2, 2 , 3, 3

NiceCurveIFS IFSFromList
1
2

,
1
2

, 120, 120, 0, 0 ,
1
2

,
1
2

, 0, 0,
1
4

,
sqrt 3

4
,

1
2

,
1
2

, 120, 120,
3
4

,
sqrt 3

4
IFSCurve 0.5, NiceCurveIFS



DrawIFSCurve NiceCurveIFS, 36

DrawIFS SierpinskiCarpet, 30000
DrawIFS SierpinskiTriangle, 20000
DrawIFS SierpinskiTriangle2, 20000
DrawIFS KochCurve, 10000
DrawIFS CantorSet, 5000
DrawDetIFS MrFace, GridIFS Up, none, Up, none, Lt, none, Rt, none, Lt , 1, scaling

= constrained
DrawDetIFS MrGrid, GridIFS Up, none, Up, none, Lt, none, Rt, none, Lt , 1, scaling

= constrained
DrawDetIFS MrPoint, GridIFS Up, none, Up, none, Lt, none, Rt, none, Lt , 1, axes = none,

scaling = constrained
DrawDetIFS MrLine, GridIFS Up, none, Up, none, Lt, none, Rt, none, Lt , 1, axes = none,

scaling = constrained
DrawDetIFS MrSquare, GridIFS Up, none, Up, none, Lt, none, Rt, none, Lt , 1, scaling

= constrained
DrawDetIFS MrTriangle, GridIFS Up, none, Up, none, Lt, none, Rt, none, Lt , 1, scaling

= constrained
DrawDetIFS MrsTriangle, GridIFS Up, none, Up, none, Lt, none, Rt, none, Lt , 1, scaling

= constrained

KochSnowflake dseg 0, 0 ,
1
3

, 0 , dseg
1
2

,
sqrt 3

6
,

2
3

, 0 , dseg
1
3

, 0 ,
1
2

,

sqrt 3
6

, dseg
2
3

, 0 , 1, 0

DrawSticks KochSnowflake
DrawSticks KochSnowflake, showdsegs
DrawSticks MrDseg, axes = boxed, view = 0.1 ..1.1, 0.5 ..0.5
DrawSticks MrDtriangle, axes = boxed
DrawSF MrDtriangle, KochSnowflake, 1, showdsegs
DrawSF MrDtriangle, KochSnowflake, 2, showdsegs
DrawSF MrDtriangle, KochSnowflake, 5

Tree dseg 0, 2 ,
1
2

, 2.4 , dseg
1
2

, 2.4 , 1, 2 , seg 0, 0 , 0, 2 , seg 1, 0 , 1,

2 :

Seed dseg 0, 0 , 1, 0 , seg 0, 0 , 1, 0 : DrawSF Seed, Tree, 9
JuliaSet 1
JuliaSet 1, scheme = 6, rate = 2
JuliaSet 1, 1.3 ..1.75, 0.15 ..0.15, maxiter = 50, grid = 50, 50 , scheme = 2, timer = true
JuliaSet 1, 1.3 ..1.75, 0.15 ..0.15, maxiter = 400, grid = 150, 150 , scheme = 2, timer = true
JuliaSet 0.7519 0.03523 I
ComplexToRealFunc z ! sin z
JuliaFractal ComplexToRealFunc z ! sin z , 6 ..6, 6 ..6, radius = 20, maxiter = 200, grid



= 150, 150 , scheme = 6, rate = 15, timer = true
MandelbrotSet
MandelbrotSet timer = true
MandelbrotSet 0.7519 .. 0.75158, 0.03523 ..0.035563, maxiter = 10000, grid = 300, 300 ,

scheme = 1, rate = 1000, timer = true, axes = normal
MandComplexToRealFunc z ! sin z c0 I c1
MandelFractal MandComplexToRealFunc z ! sin z c0 I c1 , 6 ..6, 6 ..6, radius

= 20, maxiter = 400, grid = 150, 150 , scheme = 6, timer = true, axes = framed
MakePalette 10, 10, 1
ViewPalette MakePalette 10, 10, 1

CollatzGame
1
11

,
136
15

,
5
17

,
4
5

,
26
21

,
7
13

,
1
7

,
33
4

,
5
2

, 7

Orbit Fractran CollatzGame , 23, 59
map ifactor, select IsTwoPower, %
map TwoExponent, select IsTwoPower, Orbit Fractran CollatzGame , 23, 59

BaseN
1
5

, 4

The next three commands are not part of the chaos library but are useful for saving fractals images to 
postscript or jpeg files instead of displaying them on the screen.
#plotsetup(ps,plotoptions="colour=rgb,width=8in,height=6in",plotoutput="C:/testpic.ps");
#plotsetup(jpeg,plotoptions="width=800,height=600",plotoutput="C:/testpic.jpg");
#plotsetup(default,plotoutput=default);


